Local-First Algorithms for Community Detection
نویسندگان
چکیده
One of the most important problems in the field of social network analysis, and one of the most discussed ones, is community detection, aimed at clustering the nodes on the basis of their social relationships. Community detection is relevant in various fields, including: recommendation systems, link prediction and suggestion, epidemic spreading and information diffusion, sybil detection. In this paper, we discuss various ego-based community detection algorithms and propose a new one, named PaNDEMON , to exploit the parallelism of modern architectures. Comparing its performances with other algorithms, we show that PaNDEMON demonstrates good scalability, while preserving the quality of results.
منابع مشابه
Community Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملLocal Lanczos Spectral Approximation for Community Detection
We propose a novel approach called the Local Lanczos Spectral Approximation (LLSA) for identifying all latent members of a local community from very few seed members. To reduce the computation complexity, we first apply a fast heat kernel diffusing to sample a comparatively small subgraph covering almost all possible community members around the seeds. Then starting from a normalized indicator ...
متن کاملImproving Community Detection Methods for Network Data Analysis
Empirical analysis of network data has been widely conducted for understanding and predicting the structure and function of real systems and identifying interesting patterns and anomalies. One of the most widely studied structural properties of networks is their community structure. In this thesis we investigate some of the challenges and applications of community detection for analysis of netw...
متن کاملUtilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016